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Abstract—Modern High-Performance Computing (HPC) centers are facing a data deluge from emerging scientific applications.
Supporting large data entails a significant commitment of the high-throughput center storage system, scratch space. However, the
scratch space is typically managed using simple “purge policies,” without sophisticated end-user data services to balance resource
consumption and user serviceability. End-user data services such as offloading are performed using point-to-point transfers that are
unable to reconcile center’s purge and users’ delivery deadlines, unable to adapt to changing dynamics in the end-to-end data path and
are not fault-tolerant. Such inefficiencies can be prohibitive to sustaining high performance. In this paper, we address the above issues
by designing a framework for the timely, decentralized offload of application result data. Our framework uses an overlay of user-
specified intermediate and landmark sites to orchestrate a decentralized fault-tolerant delivery. We have implemented our techniques
within a production job scheduler (PBS) and data transfer tool (BitTorrent). Our evaluation using both a real implementation and
supercomputer job log-driven simulations show that: the offloading times can be significantly reduced (90.4 percent for a 5 GB data

transfer); the exposure window can be minimized while also meeting center-user service level agreements.

Index Terms—High-performance data management, HPC center serviceability, offloading, end-user data delivery, peer-to-peer.

1 INTRODUCTION

MODERN high-performance computing (HPC) centers are
charged with supporting scientific applications that
increasingly use and produce very large data sets, e.g.,
analysis of neutron scattering data and deep-space observa-
tions. Of special importance are application result data sets or
checkpoint snapshots from long-running simulations, which
are required to be offloaded to end-user locations, where they
can be analyzed for further scientific insights. For example,
the Department of Energy’s (DOE) Jaguar supercomputer at
Oak Ridge National Laboratory (ORNL) (No. 1 in the Top 500
supercomputers) is generating terabytes of data from user
jobs from a wide spectrum of science applications in Fusion,
Astrophysics, Climate, and Combustion. Result outputs from
Fusion applications such as GTC [1] and GTS [2] can reach up
to 40 TB and 50 TB, respectively, for a 100,000 + core run. In
many cases, checkpoint data also doubles as result outputs
that are used for inspecting job progress or for eventual
aggregation into a set of visualized images (e.g., as in GTC,
GTS, etc.). In fact, as the complexity and size of applications
increase with the advent of petascale supercomputers, we
may soon be faced with offloading a petabyte of data from a
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single application run. Another driving example is the
TeraGrid collaboration [3], where result-data—from compu-
tations at any of the ten sites nation-wide—is required to be
delivered to the end user. These user facilities are accessed by
a geographically distributed user base with varied end-user
connectivity, resource availability, and application require-
ments, delivering result-data to whom in a timely manneris a
crucial challenge.

A common practice in HPC centers is to leave applica-
tion-associated data management to the end user, as the
user is intimately aware of the application’s data needs.
However, this approach ignores the interactions between
different users’ data demands, and their impact on center
serviceability. To address this, in this paper, we focus on
comprehensive end-user data management, which has
largely been marginalized under current compute-focused
center provisioning policies.

It is impractical to store all user data indefinitely at the
center. The local storage in HPC centers, the scratch space, is
used for job input, output, and intermediate data, which is
typically on the order of terabytes. Scratch is built using a
parallel file system that supports very high aggregate I/O
throughput, e.g., Lustre [4] and GPFS [5]. To ensure efficient
I/0 and faster job turnaround use of scratch by applications
is encouraged. Consequently, job input and output data is
required to be moved in and out of the scratch space before
and after the job runs, respectively. The scratch space requires
proper provisioning to accommodate the storage demands of
all incoming jobs, which in turn affects center serviceability.

HPC centers are aware of these constraints and enforce
purge policies to manage the precious scratch space, wherein
data is deleted based on a time window (ranging from a few
hours to a few days) [6], [7]. As centers become crowded, the
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Fig. 1. Depiction of use cases for a timely offload of result data: (a) an
expeditious offload to release center scratch space and to protect the
data against a purge; (b) an end-user data delivery; and (c) data delivery
to another part of the job workflow.

purge policies get more stringent to provide space for
incoming jobs. The purge window is, therefore, a product of
the center’s load, its provisioned storage, and its desire to
maintain a certain level of serviceability. However, thereisno
corresponding end-user service for a timely offload of data to
avoid purging. As stated earlier, this is largely left to the user
and is a manual process, wherein users stage out result-data
using point-to-point transfer tools such as GridFTP [8], sftp,
hsi [9], and scp. The inherent problem with using point-to-
point transfer tools for offloading data from supercomputers
is that they are only optimized for transfers between two well-
endowed sites. For example, TeraGrid offers several optimi-
zations (TCP bulffer tuning, parallel flows, etc.) for GridFTP
transfers between the various site pairs within TeraGrid,
which are already well connected (10-40 Gbps links). The
intent there, however, is to maximize the throughput between
any two sites connected using state-of-the-art links. In
contrast, end-user data delivery involves providing access
to the data at the user’s desktop. It cannot be ignored as a
“last-mile” issue.

The lack of comprehensive result-data offloading affects
not only end-user service, but also center operations. The
output data of a supercomputing job are the result of a
multihour—even several days’—run, and are usually stored
in the center’s scratch space. A delayed offload of such data
results in sub-optimal use of scratch space in that the precious
spaceis used for ajob, thatis, nolonger running. Furthermore,
a delayed offload renders output-data vulnerable to center
purge policies. The loss of output-data leads to wasted user
time allocation, which is very precious and obtained through a
rigorous peer-review process. Thus, a timely offload can help
optimize both center as well as user resources.

The need for timely data offloading is also driven by the,
often, distributed nature of computing services and users’
job workflow, which implies that data needs to be shipped
to when and where it is needed. For example, several HPC
applications analyze intermediate results of a running job,
perhaps through visualization, to study the validity of
initial parameters and to change them if necessary. A
feedback loop is then employed, which involves tweaking
the initial setup based on the newly acquired knowledge
about the running simulation. This process entails expedi-
tious delivery of the result data to the end user for online
feedback. A slightly offline version of this scenario is a
pipelined execution, where the output from one computa-
tion at supercomputer site A is the input to the next stage in
the pipeline, at site B (see Fig. 1). Large-scale user facilities,
such as SNS [10] and LEAD [11], which employ distributed

workflows are already facing these problems and require
efficient end-user data delivery services.

The common thread in both of the example cases above is
the timely offload or delivery of output data. In the former
use case, it can be stated as: Offload by a specified deadline to
avoid being purged. In the latter, to: Deliver by a specified deadline
to ensure continuity in the job workflow. In this paper, we design
such a data service. The goal of this work is not to design a
specific solution for capturing and streaming intermediate
results. Instead, we provide an architecture for expeditious
data delivery that can be used by existing tools.

1.1 Requirements of a Result-Data Offload Service
Current solutions for offloading large data to end-user sites
are often mired by several factors. First, a direct download
from the HPC center to the end-user requires that end
resources be available for the entire duration of the transfer.
This can be a significant space and bandwidth commitment
from both the HPC center and the end user. For instance, the
end-user resource might be unavailable when the data needs
to be offloaded. This renders the result-data vulnerable to
center purge policies. A desirable alternative, however, is to
quickly move the data from center scratch space—perhaps to
an intermediate storage location—so that the high-end,
expensive resource can be relieved. Better yet, the inter-
mediate location can be on the data path to the end user, so the
data can be delivered from the intermediate location to the
destination when the end resource becomes available again.

Second, current data offloading schemes from HPC
centers do not exploit orthogonal (residual, unused)
bandwidth that might be available between two transfer
end points. Exploiting such bandwidth can help alleviate
several problems endemic to data downloading, such as
bandwidth volatility.

In essence, what is needed is an architecture for timely end-
user data delivery, that is, able to reconcile both the HPC center’s
as well as a user’s constraints amidst varying bandwidth and
resource availability conditions.

1.2 Our Contributions

In this paper, we address the issues associated with
providing a data-offloading service for HPC centers.
Specifically, we make the following contributions.

1.2.1 Staged and Decentralized Offloading

We design a combination of both a staged as well as a
decentralized offloading scheme for job output data.
Compared to a direct transfer, our techniques have the
added benefits of resilience in the face of end-resource
failure and the exploitation of orthogonal bandwidth that
might be available in the end-to-end data path.

1.2.2 User-Specified Intermediate Storage Sites

We adopt a novel variation to the use of intermediate sites
(nodes) that differs from how they are used in most
decentralized systems. The nodes participating in the
transfer are specified and trusted by the user, thereby
eliminating the concern of data delivery through a set of
unreliable sites in a decentralized environment. We design
ways, in which these nodes can be specified. Moreover, the
design allows for using emerging resources, e.g., cloud
nodes, as intermediate nodes as well.
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1.2.3 Bandwidth Adaptation and on-the-Fly Decision
Making

We develop a decision making component that factors in
parameters such as a center’s purge deadline, user delivery
schedule and a snapshot of current network conditions
between the center and the end user, to determine the most
suitable approach to offload. We employ active monitoring,
using the Network Weather Service (NWS) [12], to make the
data offload process react to bandwidth degradation, thus
ensuring that a user-specified delivery constraint or a purge
deadline can be met.

1.2.4 Fault-Tolerant Offload

We utilize erasure coding schemes to ensure that the offload
is fault tolerant.

1.2.5 Detailed Analysis and Evaluation

We have implemented the offloading service components
and have thoroughly evaluated it using both trace-driven
simulations, using a realistic simulator simOffload, as well as
actual tests using the PlanetLab test bed [13]. simOffload is
driven by three-year traces from the ORNL Jaguar super-
computer [14].

1.2.6 Integration with Real-World Tools

Finally, we have developed our solution in the context of
real-world tools such as PBS [15] job submission system and
BitTorrent [16].

2 DEsIGN

In the following, we first present an overview of the system
architecture. Next, we discuss intermediate node selection
and usage. Finally, we describe how individual compo-
nents are integrated and utilized to provide the timely
offloading service.

2.1 Architecture Overview

Fig. 1 illustrates the overall offloading framework, which
entails a combination of strategies both at the center and the
end-user site to orchestrate the transfers. The design
challenges arise from the interplay between the center’s
purge policy, the job submission system and the data
transfers for offloading.

We design a new software component, Data Offload
Manager, to capture the above interactions and drive the
offloading process. The Manager is integrated into the HPC
center management software suite, and is provided with a
number of critical center parameters and job descriptions to
guide its operation. The Manager takes as input, guidelines
regarding the purge deadline, D4, from the HPC center’s
scratch space purging system, and job specification from the
job submission system. The specifications include the
output data size, S, the job’s data delivery schedule as per
the Service Level Agreement (SLA), Jsr4, and other details
such as any potentially available intermediate nodes,
<N;, P, BW;>, where P, denotes usage properties/con-
straints of the node, NN;, and BW; denotes the current
snapshot of the observed NWS bandwidth between the
HPC center and N,. Table 1 summarizes the list of
parameters used in our system.

TABLE 1
Input Parameters for the Data Offload Manager
| Parameter Description Source |
Dypurge Purge deadline Center configuration
Job output data size Job specification
Jsra Data delivery schedule Center-user SLA
< N, P;, List, properties, and available Node discovery
BW; > bandwidth of intermediate nodes process

The Manager uses these parameters to determine a course
of action, i.e., an offload schedule, O,, for offloading the
job’s output data. O, can be either a direct center to end-
user site transfer or a decentralized transfer through the
intermediate nodes. The goal is to deliver the data in time,
Tt floads such that

T‘offload < Min(Dpurgf%a JSLA)~ (1)

Given the dynamic nature of the system, O, needs to be
constantly re-evaluated based on an updated <N;, P,, BW/>,
where BW/ is the latest snapshot of NWS measurements.

Alternate routes have to be taken to meet the SLA if the re-
evaluated time to offload, T, £ fload” increases such that

Tyt fioad > JsrA- (2)

2.1.1 Parameter Specification

The offloading scheme relies on the job submission system
for critical input parameters, some of which cannot be
inferred from the center management software and must be
specified by the end-user. For this purpose, we instrument
the center’s job submission system to enable end-users to
provide information, e.g., delivery constraints and dead-
lines, etc., as part of their regular PBS [15] job scripts. The
user simply submits the modified PBS script to our system
on the center, which extracts the offloading-specific para-
meters and passes them to the offload manager.

2.1.2 Initiating the Offloading Process

Eager offloading has to be started to coincide job completion
so that output data can be expeditiously staged out. Thus, a
desired functionality of the job submission system is to be
able to automatically initiate a prespecified process at job
completion. We have done exactly that in our previous work
[17], where, we instrumented the job submission system for
starting user-specified direct data transfers, e.g., secure copy
scp or GridFTP [8], upon job completion. This was
accomplished by setting up separate queues for data and
compute jobs, submitting the offload job to the data queue
and specifying job dependencies such that the offload only
begins after the compute job (dependency setup mechanisms
are allowed by most modern resource managers). However,
only simple user-specified direct data transfer commands
were executed (e.g., scp or GridFTP) as part of offload in that
work. In this paper, we use and extend our previous work to
intimate the offload manager of the availability of a job’s
result data set for decentralized offloading of the data, which
can then initiate the offload. The presence of a center-wide
offload manager has the advantage that it can perform global
optimization, for example assign a higher priority to an
offload, that is, on a tighter deadline than others.



A final piece in the data offload architecture is the
utilization of a number of user-specified intermediate
storage locations or nodes to which data from the center
is offloaded, and from which the end-user site can then
asynchronously retrieve the data. These nodes are specified
by the user as part of the job submission script. By selecting
resources that are closer (in bandwidth) to the center, the
offload bandwidth utilization can be maximized and the
chances of loosing data due to a purge reduced. The
intermediate nodes also provide multiple data flow paths
from the center to the submission site, faster retrieval
speeds, as well as fault tolerance in the face of failure.

2.2 Intermediate Nodes

In the following, we discuss the motivation, discovery, and
utilization of intermediate storage locations in enabling a
timely HPC data offloading process.

2.2.1 Motivation for Collaboration

The decentralized offload makes extensive use of inter-
mediate nodes. We envision these to be nodes that are
specified and trusted by the user. More specifically,
consider the following collaboration scenarios that present
a strong case for the participation of intermediate nodes in
the data offloading process.

In today’s HPC environment, supercomputing jobs are
almost always collaborative in nature. In fact, a quick survey
of jobs that are awarded compute time on the ORNL
National Leadership Class Facility (NLCF)—through the
DOE’s INCITE [18] program—shows that these jobs involve
multiple users from multiple institutions. This collaborative
property is even more true in large national infrastructures
such as the TeraGrid [3], that is, among the key drivers for
end-user data delivery. Jobs in the TeraGrid are usually
from a wvirtual organization (VO), which is a set of
geographically dispersed users from different sites, coming
together to solve a problem of mutual interest for a certain
duration. In such cases, it is clear that many users, from
different sites will be interested in the resulting job output
data. Thus, there is a natural need to dispatch the result data
to more than a single location.

This property of collaborative science can be exploited to
perform a collaborative offload of job output data.
Participating sites can come together to form an overlay of
intermediate nodes that contribute space and bandwidth for
the offload. We argue that there exists a natural incentive for
the participating sites to do so. Such a definition of
intermediate nodes makes them more reliable and alleviates
a key concern of precious result-data being transferred
through an unreliable substrate.

The natural incentive works well when the project is a
large collaborative one. In this case, our work does not
expect any well-established infrastructure. Instead, it
attempts to piggy-back on existing connectivity and
residual bandwidth therein. Such a setup is well suited
for long-running jobs where the overhead of intermediate-
node setup is justified. More and more, we are observing
that HPC jobs are either long running, or that the same
users run a large number of small jobs, where the setup cost
is amortized over the multiple runs.
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Fig. 2. Intermediate node discovery using random p2p messages. Here,
the end-user submission site (black) discovers three intermediate nodes
(gray).

2.2.2 Node Specification

The intermediate nodes are specified by the users as part of
their job submission scripts. We provide special directives
with which users can annotate their job scripts. These
directives are parsed by the offload manager to extract and
maintain a list of user-specified intermediate nodes. The
explicit specification of all of the intermediate nodes that a
user has access to may not be practical for large collabora-
tions. Here, it is intended to demonstrate how a single user,
even with just a handful of collaborating sites can exploit
the intermediate nodes to conduct a collaborative down-
load. In the case of large collaborations, we can imagine
specifying simply the VO that the user is part of, in the job
script. The data offload manager then submits the job to the
scheduler. This way, the overlay of intermediate nodes
becomes an integral part of the job and can be used for the
delivery of the job’s result data. End users can further
qualify the intermediate node specification with usage
policies, which specify the available storage and the load
threshold at the intermediate node. For instance, an
intermediate node might be willing to participate in the
collaborative offload as long as the load incurred due to the
transfer is below a certain level. We will discuss this
specification in more detail later in Section 3.

2.2.3 Node Discovery

The intermediate nodes are selected from among the
participating sites that are interested in the data transfer.
However, not all nodes are available at all times. Thus, there
is a need to discover appropriate volunteer intermediate
nodes (XN;s). Given the dynamic availability, and varied
resource sharing policies of participants, a centralized
approach would be cumbersome and impractical. Instead,
we utilize the distributed and decentralized communication
substrate provided by structured p2p networks [19], [20] to
locate N;s in a dynamic environment.

We use a p2p overlay (Pastry [19]) to arrange sites that
intend to participate in the collaborative offload (see Fig. 2).
Use of the overlay provides reliable communication with
other participants in the network. The participating sites,
Njs use the overlay to advertise their availability to other
nodes in the overlay using random broadcast. Nodes that
receive these messages build local information about
available nodes for offload. A given node can use its own
policies and information about a remote node’s capacity to
make a decision regarding whether to use the remote node
for the offload.
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Finally, before submitting a job to the HPC center, the
submission site, N, interacts with the center to sort the N;s
with increasing latency from the center, while at the same
time with decreasing latency from IV,. A greedy approach is
sufficient here, as the dynamic nature of the system takes
away any advantage of trying to further optimize such
ordering before the actual offload process starts. The sorted
set of nodes is provided to the center to utilize as the
intermediate nodes, and becomes an integral part of the
job’s workflow.

While not part of our current implementation, the
scalable p2p discovery can also exploit the resource
discovery or selection mechanisms of a VO to identify
intermediate nodes within a large collaboration. VOs
typically use a Monitoring and Discovery System (MDS)
that maintains a list of available resources that are willing to
accept jobs. In our case, this infrastructure will need to be
extended to accommodate storage resources willing to
donate allocations and run our service.

2.2.4 Landmark Nodes

The reliance of our design on intermediate nodes exposes
the offload system to possible failures due to lack of
sufficient N;s. For instance, the submission site may not
have access to any (or sufficient enough) intermediate
nodes on the path to the HPC center. This could be either
due to the lack of many participating sites in the job or due
to the volatility of the intermediate nodes. To avoid such a
scenario, we utilize a number of geographically distributed
Landmark nodes that are always available and can serve as
intermediate nodes in case enough p2p-nodes are not
available. The Landmark nodes can be other HPC centers,
or nodes along national links such as, Internet2 [21] Lambda
Rail [22], REDDNET [23], or the TeraGrid [3] to which many
end users may be connected and have access to. The
location and number of the Landmarks is determined
through out-of-band agreements with the HPC center. An
example application for this use case is CERN’s LHC [24]
experiment, which is proposing to use national and regional
sites as Tier 1 and Tier 2 data distribution centers to
disseminate the experimental data from Tier 0 at CERN.
Individual users can download data from these tier sites
depending on geographic proximity.

2.3 The Data Offloading Process

The offloading process is initiated at the completion of a job
as follows: First, the center chooses a number of nodes from
the set of N;s ordered by available bandwidth. The exact
number of nodes used for this purpose, i.e., the fan-out, is
chosen to achieve maximum (prespecified) out-bound
center bandwidth utilization, or to meet previously
agreed-upon offload deadlines. These chosen N;s serve as
the Level-1 intermediate nodes. Note that the selected fan
out is not static, and can vary depending on the transfer
speeds achieved. Second, the result data is split into chunks
and parallel transfer of the chunks to Level-1 nodes is
initiated. Since the Level-1 nodes are much closer to the
center than the submission site, the offload time is expected
to be much smaller than a direct transfer to the submission
site. If not, the manager would have opted for a direct
transfer schedule to the end-user site, and not the
decentralized offload. This has the desired effects of both
releasing the precious scratch space occupied at the center

Level 0

Level 1

retrieve (pull)

Submission
: site

Fig. 3. The data flow path from the HPC center to the submission site.
The intermediate nodes are represented by hexagons. The participants
also run an instance of the NWS (gray square) for bandwidth monitoring.

and protecting the data from the purge. Third, Level-1
intermediate nodes may also further transfer data to the
Level-2 intermediate nodes (once again chosen from N;s),
and so on. Consequently, data flows toward N, though it is
not pushed to N,. Finally, N, can asynchronously retrieve
the data from the Level-N nodes. Decoupling N, from the
data push path allows the center to offload the data at peak
(prespecified) out-bound bandwidth without worrying
about the availability (and connection speed) of N, while
enabling N, to pull (retrieve) data from N;s as necessary.
The key steps in the offload process are illustrated in Fig. 3.

The Push of data from one level to another (e.g., Level-1
to Level-2) is similar to the initial offload process, and is
decentralized. Similar to the center, Level-i nodes may want
to achieve a predetermined out-bound bandwidth, or may
simply be configured to offload the data they have to a
configurable number of Level-(i 4+ 1) nodes for replication
purposes. Either option results in choosing the fastest nodes
to complete the Push operation.

The use of intermediate nodes in our system provides
multiple data-flow paths from the center to the submission
site N, leading to several alternative options for data
delivery. For instance, data may be replicated across
different N;s during the transfer from one level to another.
This will allow N; to pull data from a number of locations,
thus providing fault tolerance against node failure, as well
as better utilization of the available in bandwidth at V. The
schedule can also be used to simultaneously deliver data to
multiple interested sites.

2.3.1 Providing Service Guarantees

The submission site and the HPC center have SLAs
regarding how quickly data can be offloaded from the
center. Similar to the intermediate node specification, the
SLAs are also specified in a job script.

Given, the dynamically changing bandwidths between
participants, a fixed, or statically chosen fan out is
insufficient. Therefore, we utilize a bandwidth monitor-
ing-based scheme to dynamically adjust the fan out and
ensure meeting the SLA. For this purpose, we employ the
NWS [12] to monitor and estimate the available bandwidth
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Fig. 4. Bandwidth monitoring using the NWS. “S” indicates our software.

between participating nodes. As seen in Fig. 4, each
participating node joins a “clique,” which is a group of
sensors that measure bandwidth. A token is passed around
(Step 1), which serves as an indication to a node to probe
(Step 2) other nodes for available bandwidth. The replies
(Step 3) are recorded not only at the node, but also at a
central NWS repository (Step 4). The token is then
forwarded to the next node (Step 5). The clique gives the
center an estimate of the bandwidth available from it to
different nodes. The center uses this information to decide
whether a chosen fan out is sufficient to meet a particular
SLA, or needs to be increased. If needed, additional nodes
from the set of N;s can be chosen to increase the fan out and
meet the SLA. Nodes at Level-i utilize a similar approach to
determine the fan out for Level-: +1. At each level, a
decision making component re-evaluates the time to offload
as mentioned earlier. In case the number of available N;s are
insufficient for meeting the SLA, the submission site is
informed, which in turn can either provide more inter-
mediate nodes or accept the best effort from the HPC center.

2.3.2 Fault Tolerance through Erasure Coding

As stated earlier, pieces of the result data can be replicated
across many participating intermediate nodes, facilitating
retrieval from any subset of the nodes. In addition to this,
we apply erasure code [25], [26] to the data to improve the
reliability of the transfer, while minimizing the amount of
transferred data. The computational cost of erasure coding
can be paid by the Level-1 intermediate nodes if coding at
the HPC center (which will be part of the job’s time
allocation) is an issue.

1) Discussion: Recent studies have shown the high rate of
storage system failures [27], [28], [29], and the complexity of
ensuring reliability in large-scale installations [30], [31], [32]
such as the HPC scratch space. Improving reliability in such
fixed installations entail going through a rigorous and time-
consuming acquisition process mired with delays. In
contrast, the collective use of less-reliable individual
intermediate nodes can provide a solution that can be
arbitrarily grown to accommodate any desired level of
reliability. Thus, we argue that although individual inter-
mediate nodes may be more prone to errors compared to
single disk in an HPC center, as a system our approach is
able to provide better reliability due to its flexibility. Plus,
this reliability comes for free as we use resources
volunteered by collaborators, which would; otherwise, not
be used [33].

2.4 Desigh Summary

By way of eagerly offloading result data from the center,
our system avoids data loss due to center’s purge policies.
This in turn allows the center to free up precious scratch
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space for incoming jobs and their data, thereby improving
its serviceability. By staging the data on an intermediate
network of nodes, enroute to the destination, we ensure that
the offload will not fail due to end-user resource unavail-
ability. The result data can be pulled from the intermediate
nodes as and when the end-user resource becomes
available. Finally, our design provides an integrated data
management solution for the HPC center, rather than
leaving it up to the users, thus allowing them to focus on
their applications and not bogged down by unnecessary
system-level details.

3 IMPLEMENTATION

The implementation of the offloading framework comprises
of about 3,000 lines of C code, with the p2p substrate built
using FreePastry [34] in Java. Fig. 5 shows the architecture
of the software that runs on all the participating nodes. The
software also runs on the HPC center as an Offloading
Service. The list of N;s and the SLA are provided through
the job submission script. The role of various components is
as follows: The Node Manager is responsible for maintaining
N;s. The SLA Compliance module uses bandwidth predic-
tions provided by NWS [12] (through the NWS Query
module) to guide the offload process in meeting that SLAs.
The Erasure coding module transforms the data to be sent
out into error-coded chunks, and the Transfer Module is
charged with pushing out the encoded chunks to the next-
level intermediate nodes. Finally, at the heart of the system
is the Offload Manager that integrates all the modules and
uses them to select different offload schedules and to enable
the transfers. The erasure code that we have used is Reed
Solomon (RS) [35] in 4:5 coding configuration, i.e., four
input chunks are coded to produce five output chunks, with
a redundancy of 25 percent. The chunk-size is a tunable
parameter, which can be set based on the size of the data
sets being offloaded.

3.1 Integration with Job Submission System

HPC centers utilize job management systems, e.g., batch job
queuing using PBS [15], to ensure proper operation.
Typically, the job submission system constitutes a user job
script and a resource manager at the supercomputer center
that schedules the jobs based on a queuing system. Thus,
the natural place to specify user-defined intermediate nodes
and deadlines is the existing job submission scripts.

To this end, we have instrumented the PBS [15] job
submission system that is prevalent in HPC centers to
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TABLE 2
New Script Directives Used for Offloading
Directive Parameters Description
Stageout Output dataset, destination site Specifies offloading dataset and the target destination site
InterNode | IP address, bandwidth snapshot, availability, capacity Specifies an intermediate site location
Deadline Time Specifies the deadline for the offload to complete

enable specification of user-defined intermediate nodes and
deadlines. We have devised a way for specifying inter-
mediate nodes and delivery deadlines as annotations within
a standard PBS script. These annotations are specified as
directives, much like other PBS directives (e.g., #PBS). The
intermediate nodes can be further qualified with policy
specification that captures usage constraints. These con-
straints include the amount of space available for offload on
a node, and the node’s availability. More fine grained
policies can be easily added.

Table 2 presents the directives that we have introduced
to support the offloading process. Fig. 6 shows an
instrumented PBS script with these directives, wherein a
user specifies the stage out to a destination, the use of
intermediate nodes with their space constraints, a port
number where our transfer protocol is listening, and a
delivery deadline.

To handle the instrumented job script, we have im-
plemented a parser that runs on the HPC center. When an
annotated PBS script is submitted for execution to the job
scheduler at the HPC center, it is intercepted by our parser
that filters out directives specific to data offloading, and
passes those details to the Offloading Service for data
delivery. The remaining PBS script is then handed over to
the PBS queue for standard processing. As discussed above,
the Offloading Service is aware of the center’s purge deadline
and attempts to reconcile that with user delivery deadline
and intermediate /landmark nodes to achieve a desired data
transfer schedule.

3.2 Integration with BitTorrent and NWS

We have designed our offloading mechanism to exploit the
data dissemination abilities of BitTorrent [16] and network
monitoring facilities of NWS [12]. While both of these
services are centralized in our current implementation, we
note that the design provides for distributed equivalents to
be built and substituted easily.

Each participating node in our system runs an NWS
daemon. We have configured NWS sensors that keep track
of the vital statistics of each node, as well as record
bandwidth measurements between nodes. These measure-
ments are retrieved by our Offload Manager via periodic
queries and used in determining appropriate offload paths

#PBS —-N myjob

#PBS -1 nodes=128, wtime=12:00
mpirun —np 128 “/MyComputation
#Stageout Output DestSite
#InterNode nodel .S1:49665:50GB

#InterNode nodeN.SN:49665:30GB
#Deadline 12/14/2010:12:00

Fig. 6. An instrumented PBS script.

that can sustain sufficient bandwidth to meet specified
SLAs. The Offload Manager also employs the data from NWS
to select additional peer nodes in case an SLA cannot be met.

The decision to add additional nodes to the offload path
is driven by several factors: user-center delivery and purge
deadlines, storage capacity of nodes (specified via the PBS
script), and the available bandwidth.

Once a set of intermediate nodes is selected using NWS,
we use BitTorrent’s scatter-gather protocol to transfer the
file from the center to the selected intermediate nodes. The
offload happens as follows: The Offload Manager creates a
metadata “torrent” file for the subset of data to be
transmitted to a set of chosen intermediate nodes. The
Manager also provides BitTorrent tracking services so that
the intermediate nodes may know what data has been
transmitted to which node. Once the nodes receive the
torrent file, they use the metadata information along with
the tracker to “download” the data subset to their local
storage. The process is repeated at all the intermediate node
levels. The end host can also use appropriate torrent files to
download the result data from the intermediate nodes, thus
completing the offloading process. Finally, issues that could
arise due to the use of multiple data sources are simplified
by using BitTorrent. For example, if two Level-1 nodes
decide to send the same data set to a Level-2 node,
BitTorrent will automatically utilize both copies of the data
at the Level-1 nodes to quickly complete the transfer.

3.3 Deployment

We briefly highlight some deployment issues pertaining to
the design details illustrated above. Earlier, we discussed
how, given a set of intermediate nodes, our approach can
discover a subset of them and compose them in a scalable
fashion for a collaborative data delivery. However, colla-
borative the nature of scientific discovery, in day-to-day
supercomputing environments, resource sharing often boils
down to agreements between compute clusters, storage
resources, and networks. The Grid community has spent a
significant amount of time and effort in enabling these
policies and collaborations, and we can leverage much from
it. Instead, in this brief deployment discussion, we put forth
the concept of a Storage Service, a piece of software that an
intermediate node can run to participate in our infrastruc-
ture. The storage service is essentially the building block for
constructing our overlay and involves an intermediate node
allocating a certain amount of storage (exposed at a mount
point), advertising the protocols available for data transfers,
and installing and running the software necessary for
scalable discovery. The service also runs our BitTorrent-
based data servers and clients as well as an NWS daemon.
A node can choose not to run our data movement tool and
instead opt for an existing transfer tool. Our data delivery
mechanism will need to factor this, in addition to the
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advertised available storage, into the decision making. In
the future, we can envision a catalog of such storage servers
be maintained at a well-known location in the case where
the user is part of a collaborative science team. In those
cases, users need not specify the intermediate nodes in their
job script as that can quickly become cumbersome.

4 SIMULATING THE OFFLOADING PROCESS

The interplay between the different system components at
an end-user site and the HPC center is complex and
requires a controlled environment for in-depth analysis,
which is near-impossible to do in real HPC setups. Thus, we
have developed a realistic simulator for the offloading
process, simOffload, which models both job execution and
data offloading.

1) Job Scheduling: In simOffload, jobs are scheduled using a
First-Come First-Served (FCFS) policy with back filling.
Here, a number of large jobs are first scheduled in the order
they arrive, until a majority of the machine’s resources is
allocated. Next, smaller jobs are scheduled. This approach is
often employed in large-scale super-computers, such as
Jaguar [14], which are intended to run a few large jobs that
take up most of the machine (e.g., 100,000 cores). However,
such larger jobs can leave a small but significant number of
cores idle; back filling helps to avoid this by assigning
smaller jobs to the idle cores. The goal is to strike a balance
between the HPC center’s desire to cater to “hero apps” that
could take up an entire machine and potential idle cores.

2) Trace-Driven Simulation: simOffload utilizes a number of
different traces to provide an accurate model of the system.
Specifically it uses job and bandwidth traces.

a. Job Traces: The job traces were obtained from ORNL'’s
Jaguar supercomputer [14] and represent nearly three
years of job execution [36]. These traces provide for
each job: arrival time, start time, total job execution
time, and the compute resources used. Additionally,
the traces also contain the amount of physical
memory and virtual memory used by a job. The
memory values and compute resources are used to
estimate the amount of data produced by a job, e.g.,
the product of the available memory per core and the
number of cores requested by an application pro-
vides the size of a possible checkpoint, which needs to
be offloaded." Finally, each job in the trace corre-
sponds to a job executing and offloading in our
simulator.

b. Bandwidth Traces: We model the intermediate nodes by
using NWS bandwidth measurements from 50 differ-
entsites on the PlanetLab [13] test bed. The bandwidth
traces provide pairwise bandwidth measurements for
the 50 sites over a duration of 96 hours. Each simulated
node in simOffload is assigned a measured trace. Since
there are more nodes in the simulator than measured
on PlanetLab, some nodes will have duplicate
bandwidth traces. Nodes running for longer than 96
hours simply loop through their associated trace.
Since the measured bandwidth is for pairwise

1. HPC centers neither log the submission scripts, nor the input and
output data generated by specific job. It is not possible to change this
behavior due to administrative reasons. Thus, we have to resort to such
approximation.
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Fig. 7. Control flow in simOffload.

exclusive communication, it does not capture the
behavior when a node is participating in multiple
transfers. In simOffload, we make an assumption that
the available pairwise bandwidth is reduced propor-
tionally to the number of offloads, in which a node is
involved.

3) Simulator Output: simOffload provides an output trace
with information about overall scratch space usage and the
time it would take to offload the required data for a given
job. This information can then further be used to determine
any delay in meeting job scheduling deadlines.

4.1 Flow of Control in simOffload
simOffload maintains a pool of nodes arranged in a configur-
able topology to use as intermediate nodes. Nodes are
randomly selected to facilitate the simulated offload. If anode
is used for multiple offloads at the same time, the bandwidth
isequally divided between the offloads. Moreover, simOffload
can also capture varying storage capacities of the nodes and
can alter offloading paths based on the capacities. In
simOffload, we are mainly concerned with moving the data
from the center to the first-level intermediate nodes only.
Note that, while this can be easily extended to capture the
end-user data delivery, we do not, as we can utilize our real
implementation to more accurately study such behavior.
Fig. 7 illustrates simOffload’s operation. The main driver
is a Job tracker that reads the logs, and selects an appropriate
action for the simulator to take. We have opted for using the
same time scale as the logs. At each job arrival, the tracker
places it in a wait queue. The job input data staging is then
started. The staging process may take many simulator ticks
depending on the size of the input data, but once the
process completes the job is moved to a run queue. The job
will wait there until sufficient compute resources to run the
job become available. Once the job completes its execution,
it moves to the offload queue. If the simulator is modeling a
decentralized offload, intermediate nodes will be chosen
and the offload process will begin. If the standard approach
is used, the data will remain on the scratch until it is purged
by the center. Finally, simOffload also provides accounting
and statistics about the offload process, such as the scratch
space used and the data read, as well as other vital statistics.
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TABLE 3
Interlevel Bandwidth Statistics

From To Average BW (Mbps) | Observed Stdev (Mbps)
Center Level-1 20.7 16.7

Center N 2.05 -

Level-1 Level2 54 3.6

Level-1 N 2.2 0.2

Level-2 N 8.4 12.9

5 EVALUATION

We evaluate our result data offloading service using both
the implementation of Section 3, and the HPC center data-
subsystem simulator of Section 4. The goal of the evaluation
is to show the effectiveness of our approach to better handle
data offloading.

5.1 Implementation Results

We emulated the dynamic behavior of the proposed data
offload model using the distributed test bed facilities of
PlanetLab [13]. For our experiments, we chose 22 PlanetLab
sites such that the HPC center and the submission site were
on opposites coasts of the US, while the rest of the nodes
were geographically scattered in between. All the nodes
were arranged in a tree with the HPC center as root, the
number of children ranging from zero to four, and two
levels of intermediate nodes. Such a tree offers multiple data
flow paths from the center to the submission site and allows
for testing the approach under different scenarios. Table 3
shows the observed average bandwidths between the center,
Level-1, Level-2, and N, nodes used in our experiments. A
more detailed description of our experimental setup can be
found in [37]. In the following experiments, the chunk size
was set to 256 kB. Moreover, the reported numbers represent
averages over a set of three runs.

5.1.1 Approach Feasibility

In the first set of experiments, we determined the feasibility
of our approach compared to several point-to-point direct
transfer tools that are prevalent in HPC:

1. scp, a baseline secure transfer protocol;

2. IBP [38], an advanced transfer protocol that makes
storage part of the network and allows programs to
allocate and store data in the network near, where
they are needed;

3. GridFTP [8], an extension to the FIP protocol, which
provides authentication, parallel transfers and al-
lows TCP buffer size tuning for high performance;

4. BBCP [39], which also provides high performance
through parallel transfers and TCP buffer tuning.
Note that these protocols are all typically supported
[40] by HPC centers such as Jaguar [14].

We used a range of file sizes from 100 MB to 5.0 GB
and measured the time for each direct transfer method
between the center and the submission site. For our
offloading, we used a combination of BitTorrent and NWS
as outlined earlier.

In Table 4, we compare direct transfers with the times to
offload data from the source (HPC center) to Level-1 nodes
(Offload), time to forward the data from Level-1 to Level-2
(Push), and the time it takes the submission site to pull the
data (Pull). Compared to the direct transfer mechanisms,
the Offload is able to release the HPC center scratch space
dramatically sooner for the data sizes we considered, as
shown in Table 4. This has a significant impact on the HPC
center serviceability since the free space can now be used
for new incoming jobs.

Compared to each direct transfer mechanism, the time to
pull the data to the submission site is also reduced as seen
in Table 4. The reported pull time represents the time to
transfer the file from Level-1 and Level-2 nodes to the
submission site, and does not include the transfer time from
the source. However, the submission site pull is asynchro-
nous, and can start as soon as chunks begin to arrive at
Level-1 nodes. We note that the overall transfer time, i.e.,
the time from when the source starts sending the data to
when the submission site has received all the data is not a
suitable metric, as our approach allows the site to be offline
during the offloading process and delay starting the pull as
necessary. However, the earliest time the user can get the
output data is still a useful metric. In our system, the end
user can start retrieving the data as soon as the center has
offloaded it to Level-1 nodes. Thus, the Offload times
reported in Table 4 also serve as the earliest data availability
metric, and as stated earlier are significantly better in our
approach compared to a direct data transfer.

5.1.2 Dynamic Data Scheduling

In this section, we compare our approach with a regular
BitTorrent-based data transfer. In this case, we use NWS
bandwidth measurements to greedily provision Level-1
nodes to increase the fan out until a maximum (predeter-
mined) center outbound bandwidth is utilized.

TABLE 4
Comparison of Decentralized Transfer Times (in Seconds) with Different Direct Transfer Techniques

File Size 100 MB 240 MB 500 MB 2.1GB 5.0 GB

Offload 38 95 169 570 1339

Decent- Push 82 179 349 1123 2692

ralized Pull 29 93 202 562 1387
Slowdown wrt. Slowdown wrt. Slowdown wrt. Slowdown wrt. Slowdown wrt.
Ofid. | Pull Ofid. | Pull Ofid. | Pull Ofid. | Pull Ofid. | Pull
scp 286 [ 7.5x | 99x | 727 [ 77x | 7.8x | 1443 | 85x | 7.Ix | 5834 [ 10.2x | 10.4x | 13917 [ 104x | 10.0x
Direct IBP 183 | 4.8x | 63x | 431 | 45x | 4.6x | 929 | 55x | 4.6x | 3660 | 64x | 65x | 8546 | 6.4x | 6.2x
GridFTP | 78 | 2.1x | 2.7x | 160 | 1.7x 1.7x 359 | 2.1x 1.8x | 1603 | 2.8x | 29x | 3624 | 27x | 2.6x
BBCP 63 | 1.6x | 22x | 142 | 15x | 1.5x | 273 | 16x | 14x | 995 | 1.7x | 1.8x | 2373 | 1.8x | 1.7x

The buffer size for IBP, GridFTP, and BBCP is set to 1 MB. The number of streams in GridF TP and BBCP is set to 8 and 16, respectively.
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TABLE 5
The Time to Transfer a 5.0 GB File Using Standard BitTorrent
| Phase Time(s)
Send one copy from center (Offload) 2844
Send to all intermediate nodes (Push) 3684
Submission site download (Pull) 1393

The equivalent phases for our scheme are shown in brackets.

TABLE 6
Relative Improvement in File Transfer Times Using BitTorrent
under Varying Chunk Sizes, Compared to the Default Chunk
Size of 256 kB

Chunk Size
Time saved (%)

128 KB | 256 KB
-2.14 0

512 KB
5.46

1024 KB
6.58

Table 4, discussed in the previous section, shows data
offloading using the bandwidth measurement-based ap-
proach. Table 5 shows the time taken to deliver a 5.0 GB data
set using the regular, unmodified BitTorrent protocol. Our
results indicate that all three steps in our approach: Offload,
Push, and Pull outperform the corresponding steps in
regular BitTorrent transfer. The Offload from the HPC
center to Level-1 nodes is 52.9 percent faster, while the Push
from Level-1 nodes to Level-2 nodes is 26.9 percent faster.
Use of bandwidth measurements, therefore, results in
reduced intermediate forwarding time. The time to pull the
file to the submission site is slightly increased by 0.4 percent.
This is expected, as the flow paths do not affect the time it
would take for the submission site to pull the file. These
results show that bandwidth measurement provides a good
tool for improving offload times.

5.1.3 Effect of Chunk Size on Offload Times

In our next experiment, we varied the chunk size used by
BitTorrent, and observed the effects on file transfer time. The
results are shown in Table 6. As the chunk size increases, the
transfer time decreases. A chunk size of 1,024 kB improves
transfer speed by 6.58 percent, when compared with the
default chunk size of 256 kB. These results indicate that the
transfers can benefit from larger chunk sizes.

5.1.4 When to Employ Staged Offload?

In the experimental setup that we have adopted, the
bandwidth available between the center and Level-1 nodes
is greater than that between the center and N;. Thus, in this
setup, the center will always decide to perform staged
offloading. In the next experiment, we modified the setup to
use a node from our Level-1 nodes, i.e., a node with better
connectivity to the center, as the end user site, and did not
use N;. Then, we repeated the above experiment to offload
a 2.1 GB file, first, without considering direct transfer and
always using the staged offload mechanisms, and second,
with the ability to choose between direct and staged offload
depending on the ability to meet a SLA deadline. We
observed that for the first case, the time to offload and pull
the data was 610 s and 400 s, respectively. In contrast, for
the second case the direct transfer completed in 380 s, an
improvement of 37.7 percent in offload times. This result
coupled with the earlier experiments stress the need for the
offload mechanisms to dynamically adjust to the variations
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Fig. 8. Utilized out-bound bandwidth at the center, as the system adjusts
to failures and meets the 600 s deadline for offloading. The labeled
regions represent utilized bandwidth to individual nodes.

in the system behavior and to not be hard wired to simply
always do a staged offload or a direct transfer.

5.1.5 Enforcing SLA

In the next experiment, we study the effectiveness of the
proposed approach in enforcing SLAs. We assume that the
submission site and the HPC center have agreed on an SLA
to offload the 2.1 GB file to four Level-1 nodes (N; to N,) or
a direct transfer in 600 s. Initially, we choose a site that
supports a large bandwidth between the center and the site.
Thus, our algorithm starts off by doing a direct transfer.
However, at time t; = 10 s, we limit the inbound bandwidth
of the site to 1/10 of its value. Soon after this happens, our
system realizes that the SLA cannot be met with a direct
transfer and switches to a staged offload. Once an offload
schedule is chosen, we utilize bandwidth provided by the
NWS to estimate the time E; it would take to offload the
remaining chunks of the file. If E; turns out to be longer
than necessary to meet the SLA, the fan out is increased.
The process is repeated every time the available bandwidth
predictions change. To force dynamic scheduling to come
into play, we artificially introduced two bandwidth-chan-
ging events during the offload: at time ¢, =150s, we
limited the available bandwidth to N; to about 1 MB/s; and
at time t3 = 250 s, we failed Ns. Fig. 8 shows the sum of the
utilized bandwidths between the center and each of the four
Level-1 nodes reported every second. Initially, only N; and
N, are used. Soon after ty, the drop in N;’s bandwidth is
detected causing an increase in E;. The system reacts by
increasing the fan out to use N, so that E; remains under
the 600 s deadline. Note that between t; and t3, the
maximum available bandwidth of N3 was not needed to
meet the SLA and was not utilized. However, when N,
failed at ¢3, the system first uses N3’s maximum bandwidth
as observed as a spike (indicated by the arrow) in N3's
curve following t;. However, this increase is not sufficient
to compensate for the loss of N, hence, the fan out is
adjusted to also use N,. Also note that between ¢4 and ¢5, the
available bandwidth for NV, is reduced significantly enough
to cause the system to utilize a higher bandwidth to V4, so
that the overall total bandwidth is maintained to meet the
SLA. Once N;’s bandwidth returns too normal, our greedy
algorithm once again increases the use of N;’s bandwidth



MONTI ET AL.: TIMELY RESULT-DATA OFFLOADING FOR IMPROVED HPC CENTER SCRATCH PROVISIONING AND SERVICEABILITY 11

100 %

[of
O A

90 %

80% | . . 1

.

709% L Tk Ty
60 % 5
50 % | 8

40% | i

Available data (%)

30% ) ]
RS-two copies —+—

o L No coding-two copies ---x---
20 % RS

No‘Codinq =

! ! ! !

10 % L
1 2 3 4 5 6 7 8 9 10
Number of failed nodes
Fig. 9. Available data under different error coding schemes, as
intermediate nodes fail.

and reduces the use of N,’s bandwidth. The two spikes at ¢4
and ¢5 capture the system response time to these events.
Finally, as observed from the figure, the system is able to
transfer the file within the specified SLA by dynamically
adjusting the fan out.

5.1.6 Data Availability

In this experiment, we measured the effect of error coding
in achieving fault tolerance. For this purpose, we randomly
failed several intermediate nodes during the course of the
transfer and determined what portions of the file have
become unavailable. The experiment was repeated with
increasing number of failed nodes, up to 10 (50 percent).
Fig. 9 shows the average results over three runs for four
scenarios: with no error coding, using 4:5 RS [35] coding,
and using replication to create two copies under both no
error coding and RS. As expected, using neither error
coding nor replication causes data to become unavailable
even with a single failure, with up to 87.9 percent data being
unavailable with 10 failed nodes. Use of error coding or
replication allows the file to be transferred successfully
even when multiple nodes on the path from the center to
the client fail. Note that both RS-single copy and replication
are able to provide 100 percent availability with up to two
(10 percent) node failures. This is promising as our RS code
have only 25 percent redundancy to that of 100 percent of
replication. However, with additional node failures simple
replication is able to provide better availability than RS.
Creating two copies of data under RS further improves data
availability: 100 percent availability when 25 percent of the
intermediate nodes have failed, 89.7 percent availability
with the extreme case of 50 percent of failed intermediate
nodes. Hence, error coding at the center along with
replication through multiple data-flow paths can provide
excellent fault-tolerance behavior for the offloading process.

5.2 Simulation Results

In the next set of experiments, we utilized our simulator
(see Section 4) to study in detail the impact of our approach
on overall scratch utilization, and toward mitigating the
role of failures in job scheduling delays.

TABLE 7
Statistics about the Job Logs Used in This Study
Duration 22764 Hrs
Number of jobs 80234

Job execution time
Data size

30 s to 120892 s, average 5835 s
2.28 MB to 3714 GB, average 32.1 GB

5.2.1 Center Log Statistics

The simulator is driven by job-statistics logs collected over a
period of three-years (2004-2007) on the Jaguar [14] super-
computer. Table 7 shows some relevant characteristics of the
logs. Also, note the large variance in both the duration of the
jobs (from a few seconds to over a day) and the amount of
data they access (from a few MBs to several TBs), implying
that even a small amount of scratch savings for larger jobs
can enable accommodating a large number of smaller jobs,
consequently increasing the center’s job throughput. For this
study, we assume that the job input and output data sizes are
capped to the total aggregate memory usage of the job. For
example, if the job used 1,000 compute cores and 2 GB of
memory per core, we assume its output data size to be 2,000
GB. This is a very reasonable assumption given that many
data-intensive applications’ checkpoint or restart output
data sets cannot be larger than their total memory usage. In
the absence of per job output data size information in the
logs, we consider such an estimate to be a realistic
approximation, capturing current usage trends. The output
data itself can run in the hundreds of GBs and TBs for
leadership simulations on Jaguar. For example, Fusion
applications such as GTC, GTS, and XGC1 produce 44 TB,
50 TB, and 300 GB, respectively, of output data from runs on
100,000+ cores. Given that outputs themselves can be quite
large, we did not include the effect of intermediate
checkpoint snapshot data on scratch utilization.

5.2.2 Impact on Scratch Space Utilization

In the first set of experiments, we quantify the impact of our
timely offloading approach on scratch space usage. We play
the logs in our simulator and determine the amount of
scratch used both under a 7-day purge policy and
decentralized offloading. For this test, we assume that the
scratch is empty at the beginning. Only output data is
considered, and a data item is only purged if its associated
job has completed. Fig. 10 shows the scratch space usage
under the studied approaches, measured every 10 minutes.
Observe that the scratch utilization under decentralized
offloading is (as much as an order of magnitude) lower than
that under a 7-day purge.

To further illustrate the reduced scratch usage, Fig. 11
shows the average per hour savings achieved by the
decentralized offloading approach. Here, we observe that,
on average, across the entire log, decentralized offloading
uses 88.2 percent less scratch per unit of time (e.g., 882 GB/
Hr, on average, per Terabyte of storage) compared to a
simple 7-day purge. Thus, our approach is a promising way
for conserving precious scratch resource.
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Fig. 10. Overall scratch utilization over the duration of the traces under
different approaches. The solid line shows the average utilization
measured per hour. (a) 7-day purge. (b) Decentralized offload.

5.2.3 Impact on Job Scheduling and Center
Serviceability

In the next experiment, we limit the available scratch space,
and study how job scheduling will be affected under a
simple 7-day purge and our decentralized offloading with
several redundancy improving techniques, namely, erasure
coding, two data copies, and two-copies plus erasure coding.
To analyze the impact of completed jobs’ data offloading on
the scheduling of new incoming jobs, we measure the delay
that might be incurred in starting the new jobs. New jobs will
be delayed if their input data cannot be staged into the
scratch space due to a lack of sufficient space, resulting from
the scratch not having been cleared of result output data
from the previously completed jobs. Table 8 shows the
results in terms of the number of jobs delayed, the maximum
observed delay, as well as the average delay. Compared to a
7-day purge, decentralized offloading can significantly
reduce the delays: 78.1 percent, and 98.6 percent for 2.5 TB
and 1 TB scratch size, respectively, while 5 TB under
decentralized offloading experiences no delays. Moreover,
introducing redundancy improving techniques also intro-
duce delays, however, such delays are nominal compared to
the 7-day purge. For instance, the average delay under
decentralized offloading with both erasure coding and two-
copies is 85.4 percent, 45.7 percent, and 97.7 percent less than
that under 7-day purge for a scratch size of 5TB, 2.5 TB, and 1
TB, respectively.

Next, we calculate the impact of observed delays in job
scheduling using a new metric, Expanded Usage Factor
(EUF), which we define as the ratio (execution_time +
data_wait_time)/execution_time, where the data_wait_time is
the time the output data has to wait on the scratch space
after job completion before being offloaded. Our EUF metric
is inspired by the widely used expansion factor [3], [14],
which is often used to quantify job delays in HPC centers.
Expansion factor is defined as the ratio (wall_time +
wait_time)/wall_time averaged over all jobs (the closer to 1,
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Fig. 11. The scratch savings achieved by using a decentralized offload
compared to a standard 7 day purge.

the better). Similarly, EUF indicates the extra, avoidable
time for which a data set occupies the scratch space, and the
closer its value is to one, the better. Thus, EUF also provides
a valuable measure for the HPC center serviceability in
terms of precious scratch space consumption. Fig. 12 shows
the average EUF for the HPC center, for a duration of three
years and 80,234 jobs, under different scratch sizes. Once
again, the decentralized offloading (even with erasure
coding and two data copies) behaves superior to a 7-day
purge with average EUF reduction of 99 percent, 94 percent,
and 97 percent, with available scratch size of 1 TB, 2.5 TB,
and 5 TB, respectively. Observe that even when the scratch
space is 5 TB, i.e., well beyond the job-trace footprints, the
decentralized approach provides a much better EUF.

5.2.4 Impact of Failures

Next, we measure how first-level intermediate node failures
during the decentralized offloading process impact job
scheduling. The total number of intermediate nodes used in
this study is 25, and we assume that 10 percent to 50 percent
of these nodes fail randomly during the course of an
offload. Table 9 shows the corresponding delays under the
studied scenarios. It is observed that compared to the case
of no failures, intermediate-node failures can significantly
delay job scheduling. However, as the failures increase from
10 percent to 50 percent, the average delay remains under
68.3 percent, 24.5 percent, and 25.3 percent for 5 TB, 2.5 TB,
and 1 TB scratch size, respectively.

Next, Fig. 13 shows how first-level intermediate node
failures affect the EUF. A large number of failures of the
first-level nodes may result in retransmission to ensure data
is not lost, which in turn may cause the offload process to

TABLE 8
Job Delays under the Different Offloading Approaches

Offload Type Number of Jobs Delayed Maximum Delay (Hrs) Average Delay (Hrs)
50TB [ 25TB [ 1.0OTB | 50TB | 25TB | I.OTB | 50 TB | 25TB | 1.0 TB
7-day Purge 2541 11027 71253 59.0 351.3 7347.2 37.2 109.3 3446.0
Decent. Offloading (DO) 0 1010 2893 0.0 38.6 92.0 0.0 24.0 474
DO + Encoding 0 1226 3013 0.0 58.3 113.7 0.0 42.6 57.7
DO + 2 copies 114 1874 3409 2.5 82.0 142.2 1.8 54.2 77.0
DO + Encoding + 2 copies 197 1739 3207 7.6 85.8 142.0 5.4 59.2 80.8
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Fig. 12. Average EUF for the HPC center for a duration of three years
and 80,234 jobs, under a 7-day purge and decentralized offloading with
erasure coding and two-copies for varying scratch sizes.

take longer. It is observed that with a constrained scratch
size of 1 TB, average EUF is increased by 98 percent,
127 percent, and 323 percent for 10 percent, 25 percent, and
50 percent of the nodes failing compared to the no failure
case of Fig. 12. Similar failure affects are observed for other
scratch sizes.

In summary, the decentralized offloading approach is
promising in its ability to reduce job scheduling delays,
improving expansion factor, and can tolerate failures
without drastically degrading overall system performance.

6 RELATED WORK

HPC data management is a critical research area, and a
number of works have explored it from different perspec-
tives. In the following, we discuss several related works.

The use of intermediate buffers to hide latency or to
provide fault tolerance is a common practice in OS as well
as file systems. Kangaroo [41] extends this idea to Grid
computing, with the goal to provide reliability against
transient resource availability. It hides network storage
using an application perceived file system with relaxed
consistency semantics. However, Kangaroo simply pro-
vides a staged transfer mechanism and does not concern
itself with network vagaries or changing route dynamics in
an end-to-end data path.

IBP [38] offers a data distribution infrastructure with a
set of strategically placed resources, storage depots, to move
data. Together with the transport protocol, this is referred to
as logistical networking. We differ in our approach to
combine both a staged as well as a decentralized data
delivery. The induction of user-specified nodes also allows
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Fig. 13. Average EUF under decentralized offloading with replication
and erasure coding for varying scratch sizes and different intermediate
node failure rates.

the system to optimize the offload on a per-user basis,
which is not possible with IBP. Further, our approach is
unique as we strive to meet a deadline in data delivery and
offload from the HPC center.

In [42], the authors stream outputs from GTC runs
through logistical networking. The adaptive buffer strategy
reconciles the rate of data production with that of available
network resources by failing over the transfer to a local IBP
depot in the case of a network failure. The goal here is to
overlap computation with in-situ network data transfer. This
is complementary to our work and such in-situ processing
can also benefit from our decentralized transport.

Timely offloading of HPC center data can only be
achieved by coinciding the output data movement with
the completion of the compute job. Our previous work in
this regard treats data offload as an I/O job and schedules it
alongside computation so it begins at job completion [17].
Techniques presented in this paper complement the co-
ordinated scheduling and the two approaches are used
together as detailed in the architecture.

Stork [43] a scheduler for data placement activities in a
grid environment, along with Condor [44] and DAGMan
[45] is used to schedule data and computation together in
the face of vagaries. However, these systems are positioned
as a part of the application workflow rather than a set of
HPC center integrated services, where our work resides.

DMOVER [46] is a tool, that is, used for moving data in
the TeraGrid by aggregating data transfer commands in a
script and scheduling them using a separate queue.
However, it only addresses point-to-point data transfers
using GridFIP. In contrast, our work achieves a decen-
tralized data delivery and coincides it with job completion.

TABLE 9
Observed Job Delays under Decentralized Offloading with Erasure Coding and Two-Copies, when 10, 25, or 50 Percent of the
First-Level Intermediate Nodes have Failed

Percent Failed Number of Jobs Delayed Maximum Delay (Hrs) Average Delay (Hrs)
50TB [ 25TB | 1.0OTB | 50TB | 25TB | 1.0TB | 50 TB | 25TB | 1.0 TB
10 percent 1129 2613 4991 66.9 156.8 221.0 42.9 90.2 96.0
25 percent 1217 2687 5405 82.1 185.1 248.4 54.0 108.3 101.4
50 percent 1484 3553 7059 122.9 231.4 325.5 72.2 1123 120.9
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Our solution can also be built upon to transfer intermediate
checkpoint data as long as our system is notified about the
availability of the data.

A number of systems such as Bullet [47], [48], Shark [49],
CoDeeN [50], and CoBlitz [51] have explored the use of
multicast and p2p-techniques for transferring large
amounts of data between multiple Internet nodes. Our
work requires factoring in center-user service agreements
and dynamic resource availability, which are not consid-
ered in the above systems.

Content distribution networks (CDN) such as CoDeeN
[50] effectively implement a system of proxy servers that
users can explicitly use for faster delivery of data to their
nodes. FastReplica [52] creates replicas of data on different
CDN nodes to support faster data access. Our work shares
the multicast techniques but differs in automatic dynamic
selection of intermediary nodes to facilitate multicast
when necessary.

A number of bulk data-transfer protocols have been
developed for Internet use, e.g., Slurpie [53] allows clients to
simultaneously contact a server and use random back-off to
avoid performance degradation due to congestion. The
approach of downloading large files from several mirror
sites has been validated by its wide-spread use in BitTorrent
[16], and many protocols for parallel downloading from
mirror sites have been proposed [54], [55], [56]. These works
are complimentary, and we built on the principles devel-
oped in these systems, especially BitTorrent.

The NWS [12] provides a powerful framework, which
allows the resources of distributed computers to be
monitored. NWS bandwidth measurements have been used
in a static context to determine a Grid data site, offering
optimal download rates, from among multiple replicated
alternatives [57]. In this work, however, we use measure-
ments to determine a path within a network of nodes and
dynamically adjust it based on bandwidth degradation.

The GridFTP overlay network service [58] implements a
specialized data storage interface (DSI) to achieve split-TCP
functionality. The GridFTP client command is issued with
source and destination URLs A/C and C/D to denote a
transfer between end points A and D through nodes C and
D. In [59], the authors have extended this effort to use
previous transfers as a measure to use a particular node in
the transfer overlay. Our work differs as it delivers data on
a user-specified deadline and further uses dynamic mea-
surements to adapt and adjust the fan out of transfers.

Finally, staging of data on the HPC center to enable
timely execution of jobs is another related direction. Recent
work on staging by others [60] as well as our own [36], [61]
has shown the importance of integrating staging services
into center management software. Such works are comple-
mentary to our work, and vice versa, in that an integrated
staging and offloading solution can significantly improve
the overall serviceability of a center.

7 CONCLUSION

In this paper, we have presented the design and imple-
mentation of a result-data offloading service for HPC
centers. Offloading large data to end-user locations in a
timely manner is critical to center operations, its availability

and serviceability. Our approach presents a fresh look at
offloading by using a set of user-specified intermediate
nodes to construct a p2p network and transferring data
based on bandwidth adaptation.

Our results indicate that our offloading approach
improves the rate at which the data is offloaded from the
center (90.4 percent for a 5 GB data transfer), while allowing
the submission site to pull the data as and when the site
becomes available, at a much higher transfer rate because
the result-data has already been staged closer. Further,
offloading enables us to deliver data based on a previously
agreed upon SLA, dynamically varying the fan-out as
necessary. An analysis of our approach using a realistic
simulator, simOffload, driven by a three-year log from an
actual supercomputer reveals that it is better able to manage
the scratch space and reduce job delays. Thus, our scheme
can be extremely useful to both HPC centers and users.

Our evaluation shows that the presented offloading
scheme reacts well to system variations in meeting user-
center SLA’s and deciding when a staged offload is
preferable to a direct transfer, and achieves good fault
tolerance via its use of erasure coding and replication.

In summary, the offloading approach effectively utilizes
orthogonal, residual bandwidth and can serve as an
alternative to direct transfers, which may not always be
feasible, optimal, or fault-tolerant. Moreover, this approach
allows for a more integrated HPC center management
solution than the extant ad hoc techniques. Finally, while
distributed offloading is highly competitive, it raises new
research questions in terms of the strategic placement, and
selection, of intermediate nodes between an HPC center and
end-user destinations.
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